1) (10 Points) Consider the following linear system

$$
\left\{\begin{aligned}
& 3 x_{1}-6 x_{2}+x_{3}+5 x_{4}= \\
& 5 \\
& 2 x_{1}-4 x_{2}+x_{3}+3 x_{4}= \\
&-x_{1}+2 x_{2}-2 x_{3}
\end{aligned}\right.
$$

i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
ii) Determine the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
iii) Find all the solutions to the linear system.
iv) Determine all $x \in \mathbb{R}^{4}$ which satisfy $A x=b$ and which are orthogonal to the vector $u=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right)$.
2) (8 Points) Let $u=\binom{1}{2} \in \mathbb{R}^{2}$ and define the following three functions:
$f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{2 x_{1}+3 x_{2}}{x_{1}+(u \bullet u) x_{3}}, \quad\binom{x_{1}}{x_{2}} \longmapsto \sin \left(x_{1}\right)+\cos \left(x_{2}\right),
$$

$$
\begin{array}{rlrl}
f_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R} & f_{3}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} \longmapsto \sin \left(x_{1}\right)+\cos \left(x_{2}\right), & x & \longmapsto\left(\begin{array}{c}
x \bullet x \\
0 \\
u \bullet u
\end{array}\right) .
\end{array}
$$

i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
ii) Is f_{2} injective and/or surjective?
3) (8 Points)
i) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{1}{1}=\binom{1}{0}, \quad G\binom{-2}{-1}=\binom{-2}{2} .
$$

Determine the matrix of G.
ii) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map with

$$
F\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right), \quad F\left(\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
6
\end{array}\right) .
$$

Show that F is not injective.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x_{1}+x_{2}-x_{3} \\
x_{1}+2 x_{2} \\
x_{2}+x_{3}
\end{array}\right) .
\end{aligned}
$$

i) Calculate the image of H.
ii) Decide if H is injective and/or surjective.
iii) Find all vectors $x \in \mathbb{R}^{3}$ with $H(x)=2 x$.

After finishing this exam submit your solution as one pdf file at NUCT at the "Midterm" assignment.

